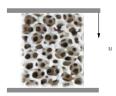
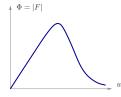
Physical response of random networks generated from the same random graph





$$\mathbf{\Phi} = f_{\Phi}(..., \underbrace{\gamma_1, ..., \gamma_L}_{\text{geometry}}, \underbrace{\theta_1, ..., \theta_K}_{\text{topology}})$$

Uwe Mühlich

Options for trying to specify
$$\Phi = f_{\Phi}(...,\underbrace{\gamma_1,...,\gamma_L}_{\text{geometry}},\underbrace{\theta_1,...,\theta_K}_{\text{topology}})$$
:

Options for trying to specify
$$\Phi = f_{\Phi}(...,\underbrace{\gamma_1,...,\gamma_L}_{\text{geometry}},\underbrace{\theta_1,...,\theta_K}_{\text{topology}})$$
:

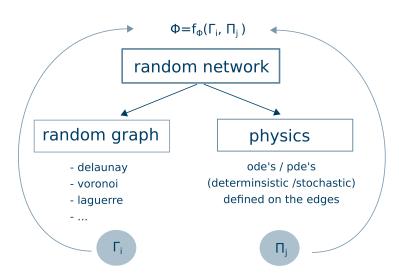
- Deduce dependencies analytically by logical reasoning.
 - requires almost transcendental cognitive skills

Options for trying to specify
$$\Phi = f_{\Phi}(...,\underbrace{\gamma_1,...,\gamma_L}_{\text{geometry}},\underbrace{\theta_1,...,\theta_K}_{\text{topology}})$$
:

- Deduce dependencies analytically by logical reasoning.
 - requires almost transcendental cognitive skills
- Perform large amount of real and virtual experiments.
 - decisions about what to vary and how
 - time and resource consuming
 - processing of a large amount of data

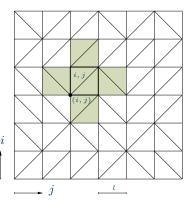
Options for trying to specify
$$\Phi = f_{\Phi}(...,\underbrace{\gamma_1,...,\gamma_L}_{\text{geometry}},\underbrace{\theta_1,...,\theta_K}_{\text{topology}})$$
:

- Deduce dependencies analytically by logical reasoning.
 - requires almost transcendental cognitive skills
- Perform large amount of real and virtual experiments.
 - decisions about what to vary and how
 - time and resource consuming
 - processing of a large amount of data
- Define and study rigorously simplified problems first.
 - investigation methodology
 - eventually a smarter version of option 2



Parent Graph

(0 graph)



discrete field ξ on a lattice:

$$\xi_{i,j} = \left\{ egin{array}{l} 0 \\ 1 \end{array}
ight. ext{if diagonal} \quad \left<
ight.$$

ratio between / and \ diagonals $\rightarrow \rho$:

$$\rho = \frac{1}{M^2} \sum_{i,j} \xi_{i,j}$$

$$\bar{\rho} = \min(\rho, 1 - \rho) \quad \in [0, 0.5]$$

nearest neighbor correlation $\rightarrow \mu$:

$$\mu = \frac{1}{M^2} \sum_{i,j} \sum_{\substack{k,l \\ d=1}} \mathbb{1}(\xi_{i,j} \neq \xi_{k,l})$$

with
$$d = |k - i| + |l - j|$$

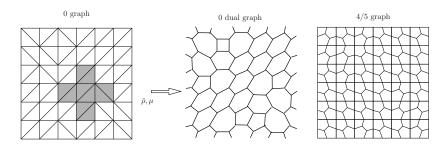
Sampling procedure

- set of all possible configurations $C = \{X_1, X_2, ..., X_{2^{M^2}}\}$
- ullet probability of finding a configuration $X_k \in \mathcal{C}$

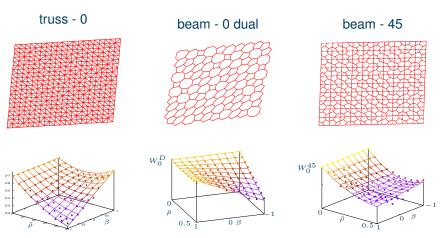
$$P(X = X_k) = \frac{1}{\mathcal{Z}} \exp(-\beta \mu(X_k))$$

- \mathcal{Z} : partition function which ensures that $\sum_{i=1}^{2^{M^2}} P(X = X_i) = 1$
- β: scalar parameter which controls the sampling procedure
- sampling according to P(X) for fixed $\bar{\rho}$ using Metropolis
- bijective relation $\mu \leftrightarrow \beta$

Derived graphs



Networks: physics \rightarrow deformation, response \rightarrow strain energy



General measures in the absence of a 0-graph

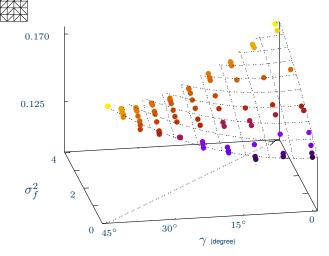
measure	symbol	0 graph		0 dual		4/5 graph	
		mean	var	mean	var	mean	var
node degree	n_d	6	√	3	0	3.5	0.25
cell degree	c_d	3	0	6	?	4.5	0.25
sidedness (nearest nbs.)	s_R	3	0	?	?	?	?
cell area	A_{C}	A_{\triangle}	0*	1^{\dagger}	?	$\frac{A_4 + A_5}{2}$	$\frac{(A_4 - A_5)^2}{2}$
area moments	$I_{11} I_{22} I_{12}$						
edge angle ⁺	$lpha_{ m e}$	√					

^{*)} without varying node coordinates †) for dimensions used here

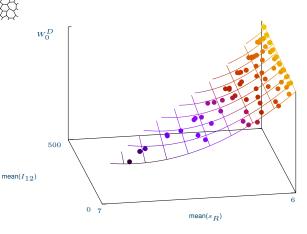
trial for 0 dual and 4/5 graph: s_R and I_{12}

⁺⁾ $\tan \alpha_e = \frac{\sum l_e \sin \alpha_e}{\sum l_e \cos \alpha_e}$

Results

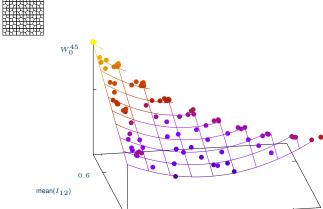


beam - 0 dual



4.56

 $mean(s_R)$



0 4.6

Summary

networks derived from 0 graph:

$$\Phi = f_{\Phi}(\mathbb{E}, \bar{\rho}, \mu) \Rightarrow \begin{cases} f_{\bar{\Phi}}^{\triangle}(\mathbb{E}, \mathsf{var}(n_d), \alpha) & \mathsf{ode} \ 2 \\ f_{\bar{\Phi}}^{\diamond}(\mathbb{E}, \mathsf{mean}(s_d), \mathsf{mean}(I_{12})) & \mathsf{ode} \ 4 \end{cases}$$

- so far: 1 topological measure and 1 geometrical measure
- suspiciously simple most likely because physics rather simple
 - linear
 - E (e.g. no overall bending)
 - time independent

to be traced back to parent graph

$$\bar{\rho}, \mu$$
 complexity \uparrow $\bar{\rho}, \mu, ...?$

• reasonable methodology for performing numerical experiments

Outlook

- analytical estimates
 - e.g., mean field

$$\underline{\underline{K}} \cdot \underline{\underline{u}} = \underline{\underline{b}} \longrightarrow \underline{\underline{K}}^* \cdot \langle \underline{\underline{u}} \rangle = \underline{\underline{b}} \text{ with } \underline{\underline{K}}^* = \langle \underline{\underline{K}} \rangle + \underline{\underline{K}}_0^{-1} \text{var}(\underline{\underline{K}})$$

• linear transport (work in progress)

$$\underline{\underline{K}} = \underline{\underline{D}} - \underline{\underline{A}}$$
, $n_d, s_d \to \left\langle \underline{\underline{D}} \right\rangle, \left\langle \underline{\underline{A}} \right\rangle, \text{var}(\underline{\underline{D}}), ...$

- physics:
 - linear / nonlinear transport
 - fracture
 - dynamics
- more general cases

Delaunay
$$\operatorname{\mathsf{var}}(n_d),\, \alpha_{\operatorname{e}}$$
 \longrightarrow $\operatorname{\mathsf{Voronoi}} /\operatorname{\mathsf{Laguerre}}$ $\operatorname{\mathsf{mean}}(s_R),\, \operatorname{\mathsf{mean}}(I_{12})$